- 1 Saliva collection by using filter paper for measuring cortisol levels in dogs
- 2 Authors: Daisuke Oyama¹, Miki Hyodo¹, Hayato Doi¹, Takuma Kurachi¹, Mamoru Takata¹,
- 3 Satoshi Koyama¹, Toshiyuki Satoh¹, Gen Watanabe¹
- 4
- 5 Author affiliation
- ⁶ ¹Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
- 7 Technology, 3-5-8 Saiwai, Fuchu, Tokyo, Japan
- 8
- 9 *Corresponding author
- 10 E-mail address: <u>skoyama@cc.tuat.ac.jp</u>
- 11 Telephone number: +81423675623
- 12 Fax number: +81423675628

14 Abstract

15 Four experiments were conducted to evaluate the accuracy and reliability of noninvasive 16 evaluation of cortisol in saliva of dogs. In experiment 1, we measured the cortisol concentration 17 in the filter paper on which 250-µL cortisol solutions had been quantitatively pipetted and in 18 filter papers dipped in cortisol solution. In experiment 2, we collected the blood and saliva of 19 dogs 3 times at 30-min intervals and compared the cortisol concentrations to examine whether 20 the dynamics of cortisol in the blood and saliva are similar. The results of experiments 1 and 2 21 showed that the cortisol concentration can be quantitatively measured with this method and that 22 the dynamics of cortisol concentration in the plasma and saliva collected by using filter paper are 23 not different (P = 0.14 for experiment 1 and P = 0.51 for experiment 2). In experiment 3, to 24 investigate the factors related to inducing stress in dogs by using the filter-paper method of 25 collecting saliva, we compared the cortisol concentrations at 0 and 30 min after collecting the 26 saliva of pet dogs. The dog owners completed a survey on their dogs, providing basic 27 information and reporting the collection of their dog's saliva. We found that the cortisol 28 concentrations increased significantly in dogs whose owners spent >2 min collecting saliva (P =29 0.005), suggesting that prompt collection of saliva is necessary for accurate assessment of 30 cortisol without induction of a stress response. In addition, the cortisol concentrations increased 31 significantly in dogs whose teeth were not regularly brushed (P = 0.04), suggesting that regular 32 teeth brushing mitigates the effect of the collection process on cortisol concentrations in the 33 saliva, with minimal stress to the dogs. In experiment 4, we measured cortisol concentrations in 34 pet dogs accustomed to having their teeth brushed by their owners, before and after interaction 35 with their owners, to assess whether brushing induces stress in dogs. We detected that the cortisol 36 concentrations significantly decreased after human-dog interaction (P = 0.008), suggesting that 37 this method does not induce stress in dogs. Our study indicates that the method of saliva 38 collection by using filter paper is effective in measuring the cortisol concentrations to evaluate 39 stress, although certain steps are required to enhance accuracy. 40 41 Keywords: Filter paper; Saliva cortisol; Stress; Human-dog interaction; Teeth brushing

43 1. Introduction

44 Recently, studies have focused on the welfare of domestic, companion, and experimental animals 45 [1]. Dogs are used not only as companions but also as working animals (eg, guide dogs, police 46 dogs, or laboratory animals for research). Dogs are also used in medical or educational facilities, 47 in animal-assisted activities, animal-assisted education, or animal-assisted therapy. It has been 48 recognized that stress deteriorates performance of working and research dogs [2], as well as their 49 welfare [3], [4], [5]. 50 Periodic evaluation of stress in dogs is important to monitor their welfare, and a simple, 51 accurate method to evaluate the stress experienced by these dogs is necessary for this evaluation. 52 Cortisol is recognized as a major stress marker [6], [7]. Blood is collected to measure plasma 53 cortisol, but the collection of blood itself can be a stressor [8], [9], [10]. Therefore, measuring 54 cortisol in saliva is often used as a noninvasive method [3]. However, cotton-based applicators, 55 which are generally used for saliva collection, are problematic for accurately measuring cortisol 56 concentration, because the ingredients in cotton interfere with measuring the saliva components 57 [11]. An alternative to using cotton swabs is to use filter paper; filter paper absorbs saliva 58 sufficiently, and no ingredients in the filter paper have been shown to interfere with cortisol 59 measurement. In this study, we evaluated the accuracy and reliability of methods of collecting 60 saliva from a dog's mouth by using filter paper to monitor the cortisol level. 61 62 2. Materials and methods 63 2.1. Ethical note 64 All procedures were conducted according to ethical guidelines of Tokyo University of 65 Agriculture and Technology, and animal use was approved by the University Animal Care and 66 Use Committee. 67 68 2.2. Experiment 1 69 To evaluate the accuracy of our method, we performed cortisol measurements by using a fluid 70 with known cortisol concentration. 71 72 2.2.1. Subjects 73 We used filter papers with a diameter of 55 mm (Ashless Quantitative Filter Paper Grade No. 74 4A; Advantec, Tokyo, Japan) for the experiments and uniformly pipetted 250 µL of cortisol in

various concentrations (1, 5, 10, 50, and 100 ng/mL) onto the center of the filter paper (pipette

- 76 group) or dipped the filter papers directly into the cortisol solutions (dip group). The procedures
- 77 were repeated 5 times for the 10, 50, and 100 ng/mL cortisol concentrations, and 10 times for 1
- and 5 ng/mL cortisol concentrations.
- 79

80 2.2.2. Extraction

- 81 Cortisol was extracted from the filter papers with ether. To do this, we folded each filter paper, 82 pushed it into and to the bottom of a glass tube $(13 \times 100 \text{ mm})$, poured 2 mL of diethyl ether 83 (Wako Pure Chemicals, Osaka, Japan) into each tube, and vortexed each tube for 3 min. After 84 vortexing, the ether was transferred into glass tubes (12×75 mm) and evaporated to dryness at 85 60°C. Next, 0.5 mL of ether was added to the tube to rinse cortisol that was attached to the tube's 86 inner wall to the bottom; the ether was then evaporated again. After cooling, we poured 250 µL 87 of phosphate buffer that contained 1% BSA (Sigma-Aldrich Co, LLC, Tokyo, Japan) into the 88 tube and mixed for another 3 min. For the radioimmunoassay, aliquots of 15 µL of the sample 89 were transferred to the assay tubes and diluted with 85 μ L of phosphate buffer and 1% BSA.
- 90

91 2.2.3. Radioimmunoassay

- 92 The cortisol concentrations were measured with the double-antibody radioimmunoassay method
- 93 with ¹²⁵I labeled radioligands (MP Biomedicals, LLC, Solon, OH, USA), as described previously
- 94 [12]. The antiserum against cortisol (anti-cortisol-3-[O-carboxymethyl] oximino, BSA; HAC-
- 95 AA71-02RBP) was provided by The Biosignal Research Center (Institute for Molecular and
- 96 Cellular Regulation, University of Gunma, Gunma, Japan). The cortisol standard (H4001-
- 97 Hydrocortisone; Sigma-Aldrich Co, LLC) was used for the assay. The intra- and interassay CVs
- 98 determined in our preliminary study were <10% and 15%, respectively.
- 99
- 100 2.3. Experiment 2
- 101 2.3.1. Subjects
- 102 Four intact male beagles housed at Tokyo University of Agriculture and Technology were used.
- 103 The median age of the dogs was 7.5 y (range, 3–8 y), and the median weight was 12.5 kg (range,
- 104 11.2–13.8 kg).
- 105
- 106 2.3.2. Blood and saliva collection

107	One milliliter of blood was collected into an EDTA-containing tube and centrifuged at 800 $\times g$ for
108	30 min at 4°C. The plasma samples were pipetted off and stored at -20° C until cortisol
109	extraction. After skin secretions, we immediately collected saliva by inserting a filter paper into
110	the dog's mouth (under its tongue and within the cheek pouch) to thoroughly wet the paper.
111	Plastic gloves were worn throughout the procedure to avoid transferring steroids from
112	human skin secretions. The filter papers were stored in plastic bags at 4°C until cortisol
113	extraction. The cortisol extraction was performed within 2 wk of the sample collection. Blood
114	and saliva were collected 3 times (0, 30, and 60 min). After the first sampling (0 min), we took
115	the subjects for a walk for approximately 10 min. To mitigate the influences of location
116	change, food contamination and pH change [13], [14], and exercise [15], [16], the samplings
117	were performed from 4:00 PM to 6:00 PM, which was >1 h after a meal and exercise, in the
118	kennels in which the dogs were usually housed.
119	
120	2.3.3. Extraction and radioimmunoassay
121	To extract plasma cortisol, the plasma samples were diluted with 1% BSA up to 400 μ L, and
122	2.0 mL of ether were added to each tube and mixed for 3 min. After mixing, the tubes were
123	immersed in ethanol that contained dry ice, and the ether was transferred into glass tubes and
124	evaporated to dryness at 60°C. Then, 0.5 mL of ether was added to the tube to rinse the cortisol
125	still attached to the inner wall to the bottom of the tube; the ether was evaporated again. After
126	cooling, 400 μ L of phosphate buffer that contained 1% BSA (Sigma-Aldrich Co, LLC) were
127	poured into the tube and mixed for another 3 min. Extraction from the filter papers and
128	radioimmunoassay procedures were described in Experiment 1. We did not correct cortisol
129	concentration for recovery rate, because our study was to determine the accuracy and reliability
130	of the method.
131	
132	2.4. Experiment 3
133	2.4.1. Subjects

134 Twenty-one dogs comprising 15 females (3 intact, 12 spayed) and 6 males (1 intact, 5 neutered)

135 were used. The median of age of the dogs was 4.0 y (range, 0.5–14 y), and median weight was

136 6.7 kg (range, 2.2–31.5 kg). Seventeen breeds were represented. The purpose and experimental

- 137 design were explained to the owners, and owners' consents were obtained before any procedure
- 138 began.

140	2.4.2.	Saliva	collection
1 10	<i></i>	Dunvu	concenton

- 141 We explained to the owners how to collect saliva by using filter paper, and the owners collected
- 142 their dogs' saliva. Saliva was collected twice (0 min and 30 min). To mitigate the influence of
- 143 location change, saliva collection was performed where each dog usually stayed from 2:00 PM to
- 144 7:00 PM. In the interval between saliva collections, the owners attended to their dogs as usual,
- 145 although they were instructed not to give a stimulus, such as food and exercise. Other
- 146 experimental conditions were the same as in experiment 2.
- 147

148 2.4.3. Questionnaire

- 149 Owners were asked to fill out a questionnaire about their dogs and the saliva collection. The
- 150 questionnaire items were as follows: the basic information on their dogs (breed, sex, age, weight,
- 151 spayed/castrated or intact, and the history of present illness), the time required to collect the dog's
- 152 saliva at 0 min, and whether they regularly brushed the dog's teeth.
- 153
- 154 2.4.4. Extraction and radioimmunoassay
- 155 Saliva cortisol was extracted from the filter papers and cortisol concentrations were measured
- 156 with radioimmunoassay. Extraction and radioimmunoassay procedures were described in
- 157 Experiment 1.
- 158
- 159 2.5. Experiment 4
- 160 2.5.1. Subjects
- 161 A total of 7 dogs (3 spayed female and 4 neutered males) were used in this experiment. The
- 162 median age of the dogs was 6 y (range, 1–11 y) and median weight was 6.7 kg (range, 4.2–
- 163 30.0 kg). Five breeds were represented. All subjects were pets and did not have a current illness.
- 164 The dog's teeth were brushed by its owners more than twice a week for >1 y. The purpose and
- 165 experimental design was explained to owners, and owners' consent was obtained before any
- 166 procedure began.

- 168 2.5.2. Saliva collection and questionnaire
- 169 We explained to the owners the method of collecting saliva by using filter paper, and the owners
- 170 collected their dogs' saliva as described in Experiment 3. Saliva was collected before and 30 min

171	after the human-dog interaction. Experimental conditions were the same as in experiment 2.
172	After saliva collection, owners were asked to fill out a questionnaire about the basic information
173	on their dogs and the time required to collect the dogs' saliva. The filter papers were stored at 4°C
174	until further analysis.
175	
176	2.5.3. Human-dog interaction
177	After the first saliva collection, the dogs interacted with their owners for 30 min. During the
178	interaction, the owners stroked, petted, played with, and spoke to their dogs. No restrictions were
179	imposed on the type of interaction.
180	
181	2.5.4. Extraction and radioimmunoassay
182	Saliva cortisol was extracted from the filter papers, and the cortisol concentrations were
183	measured by radioimmunoassay. Extraction and radioimmunoassay procedures were described in
184	Experiment 1.
185	
186	2.6. Statistical analysis
187	In experiment 1, the difference in the detected cortisol concentrations between the pipette and dip
188	groups was tested with 2-way ANOVA without repeated measures. In experiment 2, the
189	generalized liner mixed model (GLMM) was used to evaluate the similarity in the behavior of
190	cortisol concentrations in saliva and serum. In this analysis, cortisol concentration was set as a
191	dependent factor. Time of collection, collection type (saliva or blood), and interaction between
192	time of collection and collection type were set as independent factors. Identification of the dog
193	was set as a random effect. If the model detected a significant effect of the interaction, the
194	behavior of the cortisol concentration in saliva and blood was different. In experiment 3, a
195	paired t test was conducted to determine whether there was a difference between cortisol
196	concentrations collected at 0 min and that collected at 30 min. The influences of sex, breed, age,
197	castration/spay, and history of illness on cortisol concentrations were tested with ANOVA with
198	repeated measures. Fisher exact test was performed to analyze the relationship between tooth-
199	brushing ritual and the time required to collect saliva at 0 min. Dogs >15 kg were grouped as
200	large-breed dogs (n = 7), and the other dogs (n = 14; <15 kg) were grouped as midsized to small-
201	breed dogs. Dogs <1 y were grouped as young dogs (n = 4), dogs between 1 and 7 y were
202	grouped as adult dogs (n = 12), and dogs >7 y were grouped as senior dogs (n = 5). In experiment

4, a *t* test was used to determine whether there was a difference between the cortisol

204 concentrations before and after the interaction. With the exception of GLMM, statistical analyses

- 205 were performed with GraphPad Prism (Graph Pad Software, Inc, San Diego, CA, USA). We
- 206 conducted GLMM by using R (<u>http://www.r-project.org/</u>). The difference was considered
- significant if the *P* value was <0.05.
- 208

3. Results

210 3.1. Experiment 1

- 211 We measured cortisol of known concentrations and applied the cortisol solution onto filter paper
- 212 by pipette or dipped the paper into the solution. We detected the mean \pm SEM cortisol

213 concentrations of 79.58 ± 4.02 ng/mL for 100 ng of solution, 39.15 ± 0.83 ng/mL for 50 ng of

solution, 8.13 ± 0.33 ng/mL for 10 of ng solution, 4.43 ± 0.16 ng/mL for 5 ng of solution, 0.97 ± 0.16 ng/mL for 5 ng/m

- 215 0.04 ng/mL for 1 ng of solution in the pipette group and 86.84 ± 5.71 ng/mL, $43.28 \pm$
- 216 2.49 ng/mL, 7.45 ± 0.27 ng/mL, 4.54 ± 0.13 ng/mL, 0.88 ± 0.03 ng/mL in the dip group (Fig. 1).
- The mean recovery percentage of the pipette group was 85.0 ± 2.9 (n = 5) and that of the dip
- group was 85.3 ± 2.3 (n = 5). No significant difference was found in cortisol concentrations
- between the pipette and dip groups (F = 3.85, P = 0.14).
- 220
- 221 3.2. Experiment 2
- 222 Mean cortisol concentrations in serum were 4.08 ± 1.34 ng/mL at 0 min, 3.71 ± 0.63 ng/mL at

223 30 min, and 1.57 ± 0.27 ng/mL at 60 min (Fig. 2). Mean cortisol concentrations in saliva were

 1.28 ± 0.43 ng/mL, 1.50 ± 0.44 ng/mL, and 0.31 ± 004 ng/mL, respectively. Cortisol

- 225 concentrations in serum was always significantly higher than that in saliva (F = 12.45, P = 0.003;
- Fig. 2). Time of collection also had a significant effect on cortisol concentrations (F = 3.71, P =
- 227 0.047). The interaction between time of collection and collection type was not significant (F =
- 228 0.70, P = 0.51).

229

230 3.3. Experiment 3

The mean cortisol concentrations at 0 and 30 min in dogs whose owners spent <2 min collecting

- saliva (n = 11) were 1.22 ± 0.09 ng/mL and 1.14 ± 0.11 ng/mL, respectively. No significant
- difference was found between the cortisol concentrations at 0 and 30 min (P = 0.36). Conversely,
- in dogs whose owners spent >2 min collecting saliva (n = 10), the mean cortisol concentrations at

0 and 30 min were 0.99 ± 0.13 ng/mL and 1.26 ± 0.16 ng/mL, respectively. A significant 235 236 difference was found between the cortisol concentrations at 0 and 30 min (P = 0.005; Fig. 3). 237 In dogs whose teeth were regularly brushed (n = 12), the cortisol concentrations at 0 and 238 30 min were 1.16 ± 0.11 ng/mL and 1.14 ± 0.10 ng/mL, respectively, with no significant 239 difference between them (P = 0.81; Fig. 4). Conversely, the cortisol concentrations at 0 and 240 30 min in dogs whose teeth were not regularly brushed (n = 9) were 1.05 ± 0.11 ng/mL and 1.28241 ± 0.18 ng/mL, respectively; a significant difference was found between them (P = 0.042). To 242 assess the relationship between tooth-brushing ritual and collection time, we performed a Fisher 243 exact test. No significant relationship was found between these 2 factors (P = 0.67). 244 No significant difference was found between the cortisol concentrations at 0 and 30 min in 245 males (n = 6; P = 0.32), females (n = 15; P = 0.52), large breeds (n = 7; P = 0.33), midsized and 246 small breeds (n = 14; P = 0.43), young (n = 4; P = 0.15), adults (n = 12; P = 0.84), seniors (n = 247 5; P = 0.13), castrated dogs (n = 5; P = 0.32), spayed (n = 12; P = 0.56) and not spayed (n = 248 3; P = 0.80), dogs with a history of illness (n = 4; P = 0.52), and dogs without a history of illness 249 (n = 17; P = 0.12). There was only 1 non-castrated dog in this experiment, and his cortisol 250 concentrations at 0 and 30 min were 1.02 ng/mL and 1.00 ng/mL, respectively (Table 1). No 251 significant influence was found for sex (F = 0.25, P = 0.62), weight (F = 0.68, P = 0.42), age 252 (F = 0.38, P = 0.69), castration/spay (F = 0.33, P = 0.81), or history of illness (F = 0.001, P = 0.001)253 0.97) on cortisol concentrations. 254 255 3.4. Experiment 4 256 All saliva was collected in <2 min before human-dog interaction. Figure 5 shows the cortisol 257 concentrations before and after interaction, which were 1.66 \pm 0.34 ng/mL and 1.04 \pm 258 0.28 ng/mL, respectively. The cortisol concentrations significantly decreased after human-dog 259 interaction (P = 0.008). 260 261 4. Discussion 262 In the present study, we evaluated the accuracy and reliability of using filter paper as a method 263 by which to collect and measure cortisol concentrations in dogs. We showed that we could 264 quantitatively measure cortisol concentrations in saliva obtained with this method. We did not 265 detect significant differences between the cortisol dynamics in plasma and saliva, suggesting that 266 cortisol concentration in saliva behaves in a fashion similar to that in serum. The cortisol

267 concentrations at 30 min were higher than those at 0 min when an owner spent >2 min collecting 268 the dog's saliva or when an owner did not regularly brush the dog's teeth. In dogs whose owners 269 regularly brushed their teeth and spent <2 min collecting its saliva, the cortisol concentrations 270 decreased after human–dog interaction. These results indicate that the method of collecting saliva 271 by using filter paper can be used to measure cortisol concentrations and to evaluate stress levels 272 in dogs without creating additional stress in the dogs when the dog is accustomed to having its 273 teeth brushed and the saliva is collected promptly.

274 There are many methods by which to collect saliva [17], [18], [19], [20]. In humans, the 275 passive-drool method is recommended, and various kits have been developed for this [19], [21], 276 [22]. With this method, the subject collects his or her own saliva by using a straw. To apply these 277 kits to dogs, a human must collect the dog's saliva; however, there is a risk of injuring the dog's 278 mouth or the dog accidentally ingesting the straw. Thus, the cotton-based collection method has 279 generally been used in dogs [18]. It has been reported that the ingredients in cotton interfere with 280 the accurate measurement of concentrations of saliva cortisol by using radioimmunoassay or 281 enzyme immunoassay [11], [23], [24]. With the use of filter paper as outlined in the present 282 study, the dog's owner puts the filter paper into the dog's mouth to collect the saliva. The merits 283 of this method are a) the influences of the cotton ingredients are avoided, and b) the cost of 284 performing the method is low.

285 In dogs whose teeth were not brushed by their owners, the cortisol concentrations 286 significantly increased after saliva collection. The method of collecting saliva by using filter 287 paper requires the owner to touch the dog's mouth. Dogs without a ritual of teeth brushing were 288 assumed not to be accustomed to being touched in their mouths; therefore, this was a stressor for 289 the dogs. Conversely, in dogs accustomed to having their teeth brushed by their owners, the 290 cortisol concentration did not significantly increase. These results suggest that it is necessary to 291 consider whether a dog's teeth were regularly brushed when this method is applied to evaluate 292 cortisol concentration.

A protracted amount of time to collect saliva might be stressful to the dog and elicit an increase in cortisol concentration. In experiment 3, we tested the influence of the method of collecting saliva by using filter paper in the cortisol concentration. In dogs whose owners spent >2 min collecting saliva, the cortisol concentrations significantly increased from 0 to 30 min; however, the absolute value of cortisol concentration at 0 min in the dogs with collection times

298 >2 min was lower than those with the collection times >2 min. This might lead to a seeming
299 increase in cortisol concentration.

300 One of the purposes of our study was to examine whether this method could be a stressor 301 on dogs. In experiment 4, we investigated whether we could monitor stress reduction in dogs 302 after interaction with their owners by collecting saliva by using filter paper for measuring 303 cortisol. The cortisol concentrations significantly decreased after the interaction. It is reported 304 that human-dog interaction decreases cortisol concentration in dogs [25], [26], [27]. If our 305 method of collecting saliva had induced stress on dogs, we would not detect a significant 306 decrease in cortisol concentrations. Our results suggest that the method induced so little stress on 307 dogs, that we detected a reduction in cortisol concentrations after human-dog interaction, when 308 saliva is collected promptly and dogs' teeth were regularly brushed. 309 In conclusion, the method by which to collect saliva by using filter paper for measuring 310 cortisol concentration is accurate and reliable. Furthermore, the method does not induce stress on 311 the subjects if the dogs are accustomed to their mouths being touched by the teeth-brushing ritual 312 and if the saliva is collected quickly. Our study provides a relatively noninvasive, stress-free 313 method by which to assess cortisol in dogs. 314 315 Acknowledgment

316 We thank the staff of the Veterinary Physiology Laboratory, Tokyo University of Agriculture and

317 Technology, for supporting our experiments. We also thank Ms. Kathy Clutz Oyama for

318 correcting the language of our manuscript.

320 References

321	1.	F.D. McMillan. Quality of life in animals. J Am Vet Med Assoc, 216 (2000), pp. 1904-1910
322	2.	J. Stracke, B. Bert, H. Fink, J. Böhner. Assessment of stress in laboratory beagle dogs
323		constrained by a Pavlov sling. Altex-Altern Tierexp, 28 (2011), pp. 317-325
324	3.	B. Beerda, M.B. Schilder, N.S. Janssen, J.A. Mol. The use of saliva cortisol, urinary
325		cortisol, and catecholamine measurements for a noninvasive assessment of stress responses
326		in dogs. Horm Behav, 30 (1996), pp. 272-279
327	4.	B. Beerda, M.B. Schilder, J.A. Van Hooff, H.W. De Vries, J.A. Mol. Behavioural, saliva
328		cortisol and heart rate responses to different types of stimuli in dogs. Appl Anim Behav
329		Sci, 58 (1998), pp. 365-381
330	5.	J.I. Wojciechowska, C.J. Hewson. Quality-of-life assessment in pet dogs. J Am Vet Med
331		Assoc, 226 (2005), pp. 722-728
332	6.	C. Kirschabaum, D.H. Hellhammer. Salivary cortisol in psychobiological research: an
333		overview. Neuropsychobiology, 22 (1989), pp. 150-169
334	7.	M. Yamaguchi. Stress evaluation using a biomarker in saliva. Nihon Yakurigaku
335		Zasshi, 129 (2007), pp. 80-84
336	8.	L. Nyberg, K. Lundstöm, I. Edfors-Lilja, M. Rundgren. Effects of transport stress on
337		concentrations of cortisol, corticosteroid-binding globulin and glucocorticoid receptors in
338		pigs with different halothane genotypes. J Anim Sci, 66 (1988), pp. 1201-1211
339	9.	N.J. Cook, A.L. Schaefer, P. Lepage, S.M. Jones. Salivary vs. serum cortisol for the
340		assessment of adrenal activity in swine. Can J Anim Sci, 76 (1996), pp. 329-335
341	10.	M.B. Hennessy, M.T. Williams, D.D. Miller, C.W. Douglas, V.L. Voith. Influence of male
342		and female petters on plasma cortisol and behavior: can human interaction reduce the stress
343		of dogs in a public animal shelter? Appl Anim Behav Sci, 61 (1998), pp. 63-77
344	11.	S. Izawa, N. Ogawa, T. Haratani. Assessment of stress by using salivary cortisol and
345		protocols for saliva sampling. J Occup Safe Health, 3 (2010), pp. 119-124
346	12.	K. Taya, G. Watanabe, S. Sasamoto. Radioimmunoassay for progesterone, testosterone and
347		estradiol 17beta using I 125-iodohistamine radioligands. Jpn J Anim Reprod, 31 (1985),
348		рр. 186-197
349	13.	D.A. Granger, K.T. Kivlighan, C. Fortunato, A.G. Harmon, L.C. Hibel, E.B. Schwartz, G.L.
350		Whembolua. Integration of salivary biomarkers into developmental and behaviorally-

351		oriented research: problems and solutions for collecting specimens. Physiol
352		Behav, 92 (2007), pp. 583-590
353	14.	E.B. Schwartz, D.A. Granger, E.J. Susman, M.R. Gunnar, B. Laird. Assessing salivary
354		cortisol in studies of child development. Child Dev, 69 (1998), pp. 1503-1513
355	15.	G. Lac, D. Pantelidis, A. Robert. Salivary cortisol response to a 30 mn submaximal test
356		adjusted to a constant heart rate. J Sport Med Phys Fit, 37 (1997), pp. 56-60
357	16.	D.E. Jacks, J. Sowash, J. Anning, T. McGloughlin, F. Andres. Effect of exercise at three
358		exercise intensities on salivary cortisol. J Strength Cond Res, 16 (2002), pp. 286-289
359	17.	M. Neu, M. Goldstein, D. Gao, M.L. Laudenslager. Salivary cortisol in preterm infants:
360		validation of a simple method for collecting saliva for cortisol determination. Early Hum
361		Dev, 83 (2007), pp. 47-54
362	18.	A.J. Kobelt, P.H. Hemsworth, J.L. Barnett, K.L. Butler. Sources of sampling variation in
363		saliva cortisol in dogs. Res Vet Sci, 75 (2003), pp. 157-161
364	19.	K.T. Kivlighan, D.A. Granger. Salivary α-amylase response to competition: relation to
365		gender, previous experience, and attitudes. Psychoneuroendocrinology, 31 (2006), pp. 703-
366		714
367	20.	E. Topkas, P. Keith, G. Dimeski, J. Cooper-White, P. Chamindie. Evaluation of saliva
368		collection devices for the analysis of proteins. Clin Chim Acta, 413 (2012), pp. 1066-1070
369	21.	W.T. Randazzo, S. Dockray, E.J. Susman. The stress response in adolescents with
370		inattentive type ADHD symptoms. Child Psychiat Hum D, 39 (2008), pp. 27-38
371	22.	P. Celec, D. Ostatníková. Saliva collection devices affect sex steroid concentrations. Clin
372		Chim Acta, 413 (2012), pp. 1625-1628
373	23.	C Aufricht W Tenner H.P. Salzer A.F. Khoss F. Wurst K. Herkner Salivary IgA
274		C. Authent, W. Teimer, H.K. Saizer, A.E. Khoss, E. Wuist, K. Herkher. Sanvary IgA
3/4		concentration is influenced by the saliva collection method. Eur J Clin Chem
374 375		concentration is influenced by the saliva collection method. Eur J Clin Chem Clin, 30 (1992), pp. 81-83
374 375 376	24.	 C. Kullicht, W. Feinler, H.K. Salzer, A.E. Kloss, E. Wulst, K. Herkher. Salvary IgA concentration is influenced by the saliva collection method. Eur J Clin Chem Clin, 30 (1992), pp. 81-83 M. Katsumata, K. Hirata, H. Inagaki, Y. Hirata, T. Kawada. Evaluation of new saliva
374 375 376 377	24.	 concentration is influenced by the saliva collection method. Eur J Clin Chem Clin, 30 (1992), pp. 81-83 M. Katsumata, K. Hirata, H. Inagaki, Y. Hirata, T. Kawada. Evaluation of new saliva collection device for determination of saliva cotinine, cortisol, dehydroepiandrosterone and
 374 375 376 377 378 	24.	 C. Auffehl, W. Fehler, H.K. Salzer, A.E. Kloss, E. Wurst, K. Herkher. Salvary IgA concentration is influenced by the saliva collection method. Eur J Clin Chem Clin, 30 (1992), pp. 81-83 M. Katsumata, K. Hirata, H. Inagaki, Y. Hirata, T. Kawada. Evaluation of new saliva collection device for determination of saliva cotinine, cortisol, dehydroepiandrosterone and testosterone concentrations. Nihon Eiseigaku Zasshi, 64 (2009), pp. 811-816
 374 375 376 377 378 379 	24. 25.	 C. Auffehl, W. Fehler, H.K. Salzer, A.E. Kloss, E. Wurst, K. Herkher. Salvary IgA concentration is influenced by the saliva collection method. Eur J Clin Chem Clin, 30 (1992), pp. 81-83 M. Katsumata, K. Hirata, H. Inagaki, Y. Hirata, T. Kawada. Evaluation of new saliva collection device for determination of saliva cotinine, cortisol, dehydroepiandrosterone and testosterone concentrations. Nihon Eiseigaku Zasshi, 64 (2009), pp. 811-816 C.L. Coppola, T. Grandin, R.M. Enns. Human interaction and cortisol: can human contact

381	26. L. Bergamasco, M.C. Osella, P. Savarino, G. Larosa, L. Ozella, M. Manassero, P. Badino, R
382	. Odore, R. Barbero, G. Re. Heart rate variability and saliva cortisol assessment in shelter
383	dog: human-animal interaction effects. Appl Anim Behav Sci, 125 (2010), pp. 56-68
384	27. L. Handlin, E. Hydbring-Sandberg, A. Nilsson, M. Ejdebäck, A. Jansson, K. Uvnäs-
385	Moberg. Short-term interaction between dogs and their owners: effects on oxytocin,
386	cortisol, insulin and heart rate-an exploratory study. Anthrozoos, 24 (2011), pp. 301-315
387	
388	Ethics declarations
389	Ethics approval
390	Not applicable.
391	
392	Consent to participate
393	Not applicable.
394	
395	Consent for publication
396	Not applicable.
397	
398	Competing interests
399	The authors declare no competing interests.
400	

404 Figure 1 Cortisol concentrations detected in filter papers with cortisol solution. Cortisol solution of
405 known concentration was measured. The solution was pipetted onto filter paper (pipette group) or
406 filter paper was dipped into the cortisol solution (dip group). Error bars represent SEM.

30, and 60 min in the serum and saliva. The cortisol concentrations in the serum were always higher
than those in the saliva. No difference in cortisol dynamics was detected between the serum and
saliva. Error bars represent SEM.

418 significant difference was observed between cortisol concentrations when the saliva was collected 419 within 2 min at times 0 min. Conversely, the cortisol concentration at 30 min was higher than that at 420 0 min when the saliva collection required >2 min. Error bars represent SEM. **P < 0.01. 421

424Figure 4 Cortisol concentrations in dogs whose teeth were brushed and not brushed. No significant425difference was detected between cortisol concentration in saliva collected at 0 and 30 min when the426dogs' teeth were regularly brushed. Conversely, the cortisol concentration in the saliva collected at42730 min was higher than that at 0 min when the dogs' teeth were not regularly brushed. Error bars428represent SEM. *P < 0.05.

431 **Figure 5** Cortisol concentrations before and after human–dog interaction. The cortisol concentration

432 in dogs' saliva was lower after human-dog interaction than before the interaction. Error bars represent

433 SEM. ***P* < 0.01.

Table 1. Cortisol concentrations and basic information of the dogs in experiment 3.

	No. of dogs	Cortisol (n	g/mL)	P value ^a	P value ^b
		o min	30 min		
Sex					
Male	6	1.13 ± 0.13	1.31 ± 0.20	0.32	0.62
Female	15	1.11 ± 0.10	1.15 ± 0.11	0.52	
Weight					
Large	7	1.15 ± 0.10	1.25 ± 0.12	0.33	0.42
Mid-sized and small	14	1.04 ± 0.12	1.09 ± 0.16	0.43	
Age					
Young	4	1.12 ± 0.28	1.34 ± 0.27	0.15	0.69
Adult	12	1.08 ± 0.10	1.11 ± 0.12	0.84	
Old	5	1.18 ± 0.16	1.31 ± 0.20	0.13	
Castrated/spayed					
Castrated	5	1.15 ± 0.16	1.37 ± 0.24	0.32	0.81
Not castrated	1	1.02	1	_	
Spayed	12	1.13 ± 0.11	1.19 ± 0.12	0.56	
Not spayed	3	0.99 ± 0.31	1.01 ± 0.28	0.8	
History of illness					
Yes	4	1.20 ± 0.10	1.10 ± 0.17	0.52	0.97
No	17	1.09 ± 0.10	1.22 ± 0.11	0.12	

437 438

439 Data are expressed as means \pm SEM.

440 ^aAnalyzed to show the difference between cortisol concentrations at 0 and 30 min.

441 ^bAnalyzed to show the effect of each category.